POLAR DECOMPOSITION OF SQUARE MATRICES

SHIZUO KAJI (YAMAGUCHI UNIVERSITY / JST PRESTO)

「情報セキュリティにおける数学的方法とその実践」
2016年12月21日 北海道大学
WHAT IS POLAR DECOMPOSITION?

$z \in \mathbb{C}^\times$ can be decomposed uniquely as $z = ru$ where $r > 0, |u| = 1$

Similarly,

$g \in G$: Lie group can be decomposed uniquely as $g = VU$ where $V \in \mathbb{R}^n$: contractible $U \in K_G$: maximal compact
POLAR DECOMPOSITION OF A MATRIX

We focus on $G=GL(n, \mathbb{R})$: the group of real $n \times n$-invertible matrices

$A = VU$ where $V \in SPD(n) : $ symmetric positive definite matrix

$U \in O(n) : $ orthogonal matrix

$V: $ positive definite $\iff x^T V x > 0$ for any $x \neq 0$

$U^T U = E$
PROPERTIES OF THE ORTHOGONAL COMPONENT

\[A, B \in \text{GL}(n, \mathbb{R}) \quad AB^T = VU : \text{Polar decomposition} \]

Theorem

\[|A - UB|_F \leq |A - U'B|_F \leq |A + UB|_F, \quad \forall U' \in O(n) \]

where \(|C|_F := \sqrt{\text{tr}(CCT)} = \sqrt{\sum_{i,j} c_{i,j}^2} \) is the Frobenius norm

The \(U \) is the best approximating orthogonal transform
PROOF

• It is enough to look at the case when $B=E$.

• Let’s minimise

$$|A - U|^2_F = \text{tr}(A - U)(A - U)^T \quad \text{under} \quad UU^T = E$$

• plug in a Lagrange multiplier Λ, which we can take as symmetric

$$\text{(☆)} \quad \text{tr} ((A - U)(A - U)^T + \Lambda(UU^T - E))$$

• By differentiating by U,

$$-2(A - U) + 2\Lambda U = 0$$

• and so $A = (E + \Lambda)U$

• $V = E + \Lambda$ is SPD since it is the second derivative of (☆)

• Assertion follows from the uniqueness of the polar decomposition
PROPERTIES OF THE SPD COMPONENT

- The eigenvalues of V are the *singular values* of A
- $V = \sqrt{AA^T}$
- $V^2 = AA^T$

is called the covariance matrix (up to a scalar depending on the convention) when the mean of columns is zero.
It is important in data analysis as the matrix amalgamates correlation among rows.
TWO REMARKS
• First, apply the QR-decomposition (Gram-Schmidt) to obtain
 \[A = A' \, N \]
 where \(A' \) is a regular upper-triangular matrix
 and \(N \) a matrix with orthonormal rows.

• Then, for the polar decomposition \(A' = VU \),
 we obtain \(A = V(UN) \),
 which we regard as the polar decomposition of \(A \).
REMARK: LEFT AND RIGHT POLAR DECOMPOSITIONS

- The order of the two factors matter:

\[A = VU = UV' \quad V, V' \in SPD(n), U \in O(n) \]

- the $O(n)$ component is same
- but $SPD(n)$ components may differ
- A is normal $\iff V = V'$
APPLICATIONS IN DATA ANALYSIS
WHITENING

- $A \in \mathbb{R}^{n \times m}$: data (each column represents a sample and each row a random variable)
- Correlation between variables is amalgamated in AA^T
- Whitening is a linear transform (change of basis) W such that the rows of WA have no correlation (white noise); that is, $(WA)(WA)^T = E$
- If $A=VU$ is the polar decomposition,

$$ (V^{-1}A)(V^{-1}A)^T = V^{-1}AA^TV^{-1} = E $$
DATA ALIGNMENT

Given two shapes (vector data sets), align them using scaling and rotation.

An important pre-process for coordinate free data analysis
DATA ALIGNMENT (PROCRUSTES PROBLEM)

\[A, B \in \mathbb{R}^{n \times m} \]

We want to find \(U \in O(n) \) and \(c \in \mathbb{R} \) such that \(|A - cU \cdot B|_F \) is minimised.

Thm

First, translate \(P \) and \(Q \) so that the means of the row vectors become zero.

Decompose \(AB^T = VU \)

Then, \(U \) and \(c = \text{tr}(V)/\text{tr}(BB^T) \) gives the solution.
DISTANCE BETWEEN POINT CLOUDS

Measure how different two data sets (indexed and of a fixed size) A and B are up to scaling and rotation.

\[A, B \in \mathbb{R}^{n \times m} \]

\[\min_{c, U} \| A - cU B \|_F \]

serves as a good distance between point clouds. It can be computed by the previous theorem.
SINGULAR VALUE DECOMPOSITION (SVD)

- SVD of A

 $A = P\Sigma Q^T$ \quad $P, Q \in O(n)$

 $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$

 $\sigma_i > 0$ singular values

 $A = (P\Sigma P^T)(PQ^T)$

 is the polar decomposition

 $M = U\Sigma V^*$
APPLICATIONS OF SVD

\[A = P\Sigma Q^T \]

- **pseudo inverse**
 \[A^+ = P\Sigma^+ Q^T \]

 \[Ax=b \implies A^+b \text{ is the least norm solution when there is a solution} \]
 \[x=A^+b \text{ minimises } |Ax-b|^2 \text{ when there is no solution} \]

 (least square solution)

- **matrix approximation by low rank matrix**: (equivalent to PCA)
 setting lower singular values to zero, one obtains the best approximation in terms of the Frobenius norm

 \[AQ=P\Sigma \text{ gives the components} \]
PRINCIPAL COMPONENT ANALYSIS (PCA)

Dimension reduction technique

“Find a linear subspace of dim=n such that the projected data loses as little as possible information”
COMPUTATION OF POLAR DECOMPOSITION
BY SVD

- SVD of A

\[
A = P\Sigma Q^T \quad P, Q \in O(n) \\
\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)
\]

\[
A = (P\Sigma P^T)(PQ^T) \quad \text{is the polar decomposition}
\]

- PROS: numerically stable (many good algorithms for SVD)
- CONS: SVD is expensive and not always available
DIAGONALISATION

\[V = \sqrt{AA^T} \]

can be computed by diagonalising the symmetric matrix \(AA^T \):

\[AA^T = Q\Sigma Q^T \]

All the diagonal entries of \(\Sigma \) (singular values) are positive, so take their square roots to have

\[V = \sqrt{AA^T} = Q\sqrt{\Sigma} Q^T, \quad U = V^{-1} A \]

diagonalisation is expensive
HIGHAM’S ITERATIVE METHOD

Thm
\[
\begin{align*}
A_0 &= A \\
A_{k+1} &= \left(A_k + A_k^{-1} \right) / 2 \\
\lim_{k \to \infty} A_k &= U
\end{align*}
\]
computes the orthogonal factor of \(A = UV \) and converges quadratically. (can be accelerated by scaling)

Then, \(V = A \ U^T \)

Proof: When \(A \) is diagonal, the iteration converges to \(E \) up to sign.
\[
(x = (x + x^{-1}) / 2 \quad \Rightarrow \quad x^2 = 1)
\]
So \(A = P \Sigma Q^T \) converges to \(PQ^T = U \)
KAJI-OCHIAI’S METHOD

Recall the Cartan decomposition:

\[z \in \mathbb{C}^\times \text{ can be decomposed as } \quad z = e^s e^{i\theta} \quad \text{where} \quad \begin{align*}
 s \in \mathbb{R} &= L(\mathbb{R}_{>0}) \\
 i\theta \in i\mathbb{R} &= L(S^1)
\end{align*} \]

Similarly for \(A \in \text{GL}(n, \mathbb{R}) \)

\[A = \exp(X) \exp(Y) \quad \text{where} \quad X: \text{symmetric} \]

\[Y \in \mathfrak{o}(n) := \{ Y \mid Y^T = -Y \} \]
KAJI-OCHIAI’S METHOD

\[A = \exp(X) \exp(Y) \]

\[V = \exp(X) \quad U = \exp(-X)A \]

\[A = VU \quad V \in \text{SPD}(n) : \quad U \in \text{O}(n) : \]

where \[X = \log(AA^T)/2 \]

OK, but how can we compute log and exp?
KAJI-OCHIAI’S METHOD

• Divide

\[\exp(X) = 1 + X + \frac{X^2}{2!} + \cdots \]

by the characteristic polynomial (Carley-Hamilton) to obtain an \((n-1)\)-degree polynomial \(f\)

• The coefficients of \(f\) are functions of eigenvalues of \(X\).

• Same is true for \(\log\) (and any conjugate invariant function)
EXPONENTIAL OF A SYMMETRIC MATRIX

Thm

For a symmetric 3×3-matrix X, (a similar formula holds for any size)

$$\exp(X) = c_1 I + c_2 X + c_3 X^2$$

where

$$
\begin{pmatrix}
1 & \lambda_1 & \lambda_1^2 \\
1 & \lambda_2 & \lambda_2^2 \\
1 & \lambda_3 & \lambda_3^2
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix}
=
\begin{pmatrix}
e^{\lambda_1} \\
e^{\lambda_2} \\
e^{\lambda_3}
\end{pmatrix}
$$

λ_i: eigenvalues of X
CF. EXPONENTIAL OF AN ANTI-SYMMETRIC MATRIX

For X: 3×3 satisfying $X^T = -X$

$$\exp(X) = I_3 + \frac{\sin \theta}{\theta} X + \frac{1 - \cos \theta}{\theta^2} X^2 = I_3 + \text{sinc}(\theta) X + \frac{1}{2} \left(\frac{\text{sinc} \left(\frac{\theta}{2} \right)}{2} \right)^2 X^2$$

where $\theta = \sqrt{\frac{\text{tr}(XX^T)}{2}}$

Our argument can be used to prove this famous formula and its generalisation
COMPARISON OF COMPUTATION METHODS

• SVD: Reliable, but slow.
 Directly works for non-singular matrices

• Higham: Fast and widely used

• Kaji-Ochiai: Very fast when computing a lot of polar decompositions of fixed size matrices.
 Computes the Cartan decomposition as well.
 Numerically unstable for near singular matrices
CODES

MIT licensed C++ codes are available at

https://github.com/shizuo-kaji/AffineLib

which contain all four algorithms and more
APPLICATION IN GRAPHICS

Shape/Motion

• Analysis
• Recognition
• Deformation
SHAPE ANALYSIS

Find “distorted” parts

Piecewise linear map

\[f: M_1 \rightarrow M_2 \]

\[\Rightarrow f|_T = \text{VU polar decomp} \]

and use \(|V-E|\) as an indicator
SHAPE MATCHING

Very fast “simulation” of an elastic body

\[M(t) = \{ x(t) \in \mathbb{R}^3 \} \] elastic body

\[F(t): \text{external force} \]

\[\text{geometric constraints} \]

\[M(t+\Delta t) \]
Muller et al.
Meshless Deformations Based on Shape Matching
SIGGRAPH2005

Video
https://www.youtube.com/watch?v=CCIwiC37kks
SHAPE MATCHING

• Find $U \in SO(n)$ which minimises $|U M(0) - M(t)|$ by Polar decomp

• Define “elasticity” force at a point x by $c(U x(0) - x(t))$ for some constant c

• Update the speed of x by

$$x'(t+\Delta t) = d(x'(t) + F(t) + c(U x'(0) - x(t)))$$

where $d < 1.0$ is the damping coefficient
SHAPE MODELLING

shape + user interaction => deformed shape
SHAPE MODELLING

Given a shape M and constraints, find a map $f: M \rightarrow \mathbb{R}^3$
FIELD OF TRANSFORMATION

First, construct a field $A : M \rightarrow \text{GL}(3; \mathbb{R})$ by solving the Laplace equations

$$\Delta U = 0, \quad \Delta V = 0 \quad A = VU$$

under A(some points) = constraints

Then, find f which minimises

$$\int_M |\nabla f - A|^2 dM$$

The solution is given by the curl free part of the Helmholtz-Hodge decomposition of A.
WHY DECOMPOSE?

Mathematical reason

- We want an “easy” presentation of $\text{GL}(n; \mathbb{R})$
- Let’s use Lie algebra
- The problem is that Lie correspondence is not surjective since $\text{GL}(n; \mathbb{R})$ is not compact
- But decomposed factors are mapped surjectively by exponential

Intuitive/cognitive reason

Rotation doesn’t cost
DEMO WITH LEAP MOTION
DISCRETE DIFFERENTIAL GEOMETRY

DDG discusses how to define Δ, ∇, \int for discrete objects
and is getting popular in data sciences

Mantra:

• (meaningful) Big data in a high dimensional Euclidean space should lie on a manifold
 (dimension reduction)

• Geometry of the manifold tells a lot (curvature / intrinsic metric)

• Much of geometry is captured by the Laplacian
HARMONIC FIELD – Δ KNOWS THE GEOMETRY
THANK YOU!